The Midterm Exam program

on the discipline « **The theory of elementary particles**» for students of the fourth year of the specialty «6M060400 – Physics»

The proposed MidtermExam program on discipline« **The theory of elementary particles** » is made according to the discipline syllabus. The program determines the requirements for the levels of mastering the academic discipline: what the student should have *an idea* after studying the course for 7 weeks, which should know what *skills* and *habits* should be formed.

At MidtermExam, students will be asked two theoretical questions and one task.

Midterm addresses the following questions:

- 1. Particles and fields.
- 2. Brief overview of empirical material.
- 3. Elementary particles.
- 4. Elementary particles and the universe.
- 5. Cosmological singularity.
- 6. Evolution of the Universe.
- 7. Relic radiation.
- 8. Evolution of the Universe.
- 9. Regularities of fundamental interactions.
- 10. Quantum properties of particles. Spin.
- 11. Quantum properties of particles. Isospin.
- 12. Elementary particles and stars.
- 13. Properties of neutrinos.
- 14. Neutron stars.
- 15. Collapse of the star.

BIBLIOGRAPHY

- 1. A. Bettini, Introduction to Elementary Particle Physics, Cambridge University Press, 2008.
- 2. M. Thomson, Modern Particle Physics, Cambridge University Press, 2013.
- 3. C. Amsler, Nuclear and Particle Physics, IOP Publishing, Bristol, 2015.
- 4. D.H. Perkins, Introduction to High Energy Physics, Cambridge University Press, 2000. Hochenergiephysik, Addison-Wesley, 1990. (out of press)
- 5. B. Povh u.a., Teilchen und Kerne, Springer, 8. Auflage, 2009. (Paperback) Encyclopedia of Applied High Energy and Particle Physics, Ed. R. Stock, Wiley 2009.
- 6. Y. Nagashima, Elementary Particle Physics. Wiley. Vol. 1: Quantum Field Theory, 2010. Vol. 2: Foundations of the Standard Model, 2013.
- 7. R. Cahn, G. Goldhaber, The Experimental Foundations of Particle Physics, Cambridge Univ. Press, 2009